1. Education
You can opt-out at any time. Please refer to our privacy policy for contact information.

Discuss in my forum

How To Calculate Osmotic Pressure Example

Calculating Osmotic Pressure Example Problem

By

Sugar cubes are pre-measured blocks of sucrose.

Sugar cubes are pre-measured blocks of sucrose.

Uwe Hermann

This example problem demonstrates how to calculate the osmotic pressure of a solution.

Problem:

What is the osmotic pressure of a solution prepared by adding 13.65 g of sucrose (C12H22O11) to enough water to make 250 mL of solution at 25 °C?

Solution:

Osmosis is the flow of a solvent into a solution through a semipermiable membrane. Osmotic pressure is the pressure that stops the process of osmosis. Osmotic pressure is a colligative property of a substance since it depends on the concentration of the solute and not its chemical nature.

Osmotic pressure is expressed by the formula:

Π = iMRT

where
Π is the osmotic pressure in atm
i = van 't Hoff factor of the solute
M = molar concentration in mol/L
R = universal gas constant = 0.08206 L·atm/mol·K
T = absolute temperature in K

Step 1: - Find concentration of sucrose

From the periodic table:
C = 12 g/mol
H = 1 g/mol
O = 16 g/mol

molar mass of sucrose = 12(12) + 22(1) + 11(16)
molar mass of sucrose = 144 + 22 + 176
molar mass of sucrose = 342

nsucrose = 13.65 g x 1 mol/342 g
nsucrose = 0.04 mol

Msucrose = nsucrose/Volumesolution
Msucrose = 0.04 mol/(250 mL x 1 L/1000 mL)
Msucrose = 0.04 mol/0.25 L
Msucrose = 0.16 mol/L

Step 2: - Find absolute temperature

T = °C + 273
T = 25 + 273
T = 298 K

Step 3: - Determine the van 't Hoff factor

Sucrose does not dissociate in water therefore the van 't Hoff factor = 1

Step 4: - Find osmotic pressure

Π = iMRT
Π = 1 x 0.16 mol/L x 0.08206 L·atm/mol·K x 298 K
Π = 3.9 atm

Answer:

The osmotic pressure of a the sucrose solution is 3.9 atm.

©2014 About.com. All rights reserved.